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tunneling exponent, we found the observed tunneling 
current to be about 10-40 times larger than that pre
dicted by Kane's expression. This discrepancy seems too 
large to be accounted for by the uncertainty in the 
magnitude of the electron-phonon coupling constant. 

It should be emphasized that the good quantitative 
agreement between the temperature dependence of the 
tunneling current calculated from Kane's theory of in
direct tunneling and the experimental data does not 
prove the correctness of Kane's expression. It merely 
indicates that the coefficient of Eg*l2?n*1,2/F which 
appears in the exponent is at least approximately cor
rect. Since our comparison is insensitive to the shape 
of the I-V characteristic, we cannot offer any evidence 

I. INTRODUCTION 

THE microwave conductivity of semiconductors in 
the presence of high steady electric fields has been 

studied by several workers. In the first experiments re
ported by Arthur et al.1 the attenuation of a microwave 
signal produced by the sample of known dimensions in 
the presence of a steady field was measured. The 
attenuation so produced was assumed to be proportional 
to the slope mobility and the experimental data were 
used to derive the high field conductivity. This as
sumption is apparently justified if the product of the 
microwave frequency and the momentum relaxation 
time is negligible compared to unity, as was the case in 
these experiments. 

Later experiments carried out by Gibson et al.,2 how
ever, show that the microwave mobility in the presence 
of high steady fields is not the same as the slope mobility 
but is intermediate between the slope mobility and the 
dc mobility. This result that the microwave mobility is 
different from the slope mobility even when the product 

1 J. B. Arthur, A. F. Gibson, and J. W. Granville, J. Electron. 2 
145 (1956). 

2 A. F. Gibson, J. W. Granville, and E. G. S. Paige, J. Phys. 
Chem. Solids 19, 198 Q961). 

relating to the structure of the D function. Furthermore, 
no evidence for the asymmetry of the tunneling ex
ponent with respect to forward and reverse current flow 
was observed. 
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of microwave frequency and momentum relaxation time 
is much less than unity may be explained when the 
mobility expressions applicable to the problem are 
properly developed. Such expressions have been derived 
by Paranjape3 and also by Gibson et al.2 

It has been assumed that the carrier density is high 
enough to produce a Maxwellian energy distribution 
due to predominant interelectronic collisions. But, the 
carrier temperature which is determined by the energy 
and momentum balance conditions, is higher than the 
temperature of the lattice. It is then shown that the 
perturbation in the carrier temperature produced by the 
microwave signal is not in phase with the signal, but 
leads it. The lead angle is determined by the applied 
steady field and the product of the microwave frequency 
and the energy relaxation time, rather than the mo
mentum relaxation time. Since this product is compara
ble to unity at the experimental frequencies, the per
turbed temperature of the carriers differs appreciably in 
phase from the microwave signal. Hence, the microwave 
conductivity is much different from that derived from 
the slope of the conductivity versus field curves; also, a 

3 B. V. Paranjape, Phys. Rev. 122, 1372 (1961). 
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The distribution function of carriers in a semiconductor when subjected to a small microwave field and a 
high steady electric field is derived, considering both the acoustic and optical phonon scattering. Expressions 
for microwave conductivity and change in apparent dielectric constant are obtained from the distribution 
function. It is shown by numerical calculations that the conductivity evaluated from these expressions agree 
closely with the experimental value. The calculated value of the change in apparent dielectric constant, 
however, is found to be of the same order as the experimental value, but the agreement is poorer than that 
for the conductivity. 
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positive change in apparent dielectric constant is 
produced. 

The expression for conductivity given by Paranjape 
explains the experimental results qualitatively. This is 
because the expression was derived assuming acoustic 
phonon scattering only. However, there are other scat
tering sources, namely, optical phonons, impurity 
centers and intervalley phonons. It has been shown by 
Conwell,4 Stratton,5 and Yamashita and Inoue6 that dc 
hot electron conductivity curves for room temperatures 
may be explained if, in addition to acoustic phonon 
scattering, the effect of optical phonon scattering only is 
considered. The effects of impurity scattering or inter
valley phonon scattering are not of appreciable im
portance. It is, therefore, expected that a theory con
sidering the effect of optical phonons, in addition to 
acoustic phonons, should give quantitative fit with 
experiments. In the theory given by Gibson et al.2 the 
effect of optical phonon scattering has been considered 
and a relatively better agreement with experiments was 
observed. However, like Paranjape,3 these authors also 
assumed predominant interelectronic scattering though 
the conditions of the sample did not ensure this. An 
alternative approach to the development of the theory 
when predominant e-e scattering cannot be assumed7-8 

is to solve the Boltzmann equation assuming predomi
nant acoustic and optical phonon scattering. The con
ductivity may then be obtained using this distribution 
function. This is the method used by Yamashita and 
Watanabe7 for analysing the dc hot electron conducti
vity characteristics. The purpose of this paper is to ana
lyse the microwave conductivity of semiconductors in 
the presence of high steady electric fields following this 
procedure. 

In Sec. II equations giving the energy distribution 
function of the carriers are first derived, taking into 
account the effect of both acoustic and optical phonon 
scattering. The perturbation in the distribution function 
produced by the microwave field is obtained in Sec. III. 
In Sec. IV the expressions for the conductivity obtained 
from this distribution function are given. The numerical 
results obtained for the experimental condition of 
Gibson et al.2 are discussed in Sec. V. 

II. THE ENERGY DISTRIBUTION FUNCTION 
FOR THE CARRIERS 

Let f(K) denote the distribution function for the 
carriers having the wave vector K at a time t. The 
distribution function is assumed to depend on / because 
of the presence of the microwave field. The distribution 

4 E. M. Conwell, J. Phys. Chem. Solids 8, 234 (1959). 
5 R. Stratton, J. Electron. Control 5, 157 (1958). 
6 J. Yamashita and K. Inoue, J. Phys. Chems. Solids 12, 1 

(1960). 
7 J. Yamashita and M. Watanabe, Progr. Theoret. Phys. 

(Kyoto) 12, 443 (1954). 
8R. Stratton, Proc. Roy. Soc. (London) A242, 157 (1958). 

function f(K) satisfies the equation 

3/(20 

dt 

df(K) 

dt 

df(K) 

dt 
(1) 

Solution to (1) is obtained assuming that f(K) may 
be expanded as 

f(K) = f(E)+KxS(E), (2) 

where Kx is the component of the wave vector in the 
direction of the applied field F, and f(E) and g(E) are 
functions of only the energy, E, of the carriers. The total 
number of electrons is obtained from f(E), whereas the 
current is obtained from g(E). [The functions f(E) and 
g(E) are written henceforward as / and g, respectively, 
for the sake of simplicity.] 

In the case of nonpolar solids like Ge and Si at room 
temperature, the term df(K)/dt | coii may be written as 

df(K) 

dt 

df(K) 

Coll dt 

df(K)\ 

dt I 
(3) 

where df(K)/dt\ao and df(K)/dt\ov represent, respec
tively, the change in the distribution function due to the 
interaction of the electrons with acoustic and optical 
modes of lattice vibrations. The effect of impurity and 
e-e scattering is assumed to be negligible. The terms 
df(K)/dt | ac and df(K)/dt | op may be written as6 

df(K) 

dt 

df(K) 

\E2 +1—+2E) 
EY^L dE2 \kT / (E) dE 

IE £ n 
+—f-Kx-—g\, (4) 

2mc2 J kT 

dt 

B 
— ho>0(e

s+l)( E + — )+2(es-1) 
Y't \ dE2 dE/ op feoo(£)1/2L \ dE2 dE. 

X (E—+f)-KA(es+l)g], (5) 
\ dE / ha>Q J 

where A = $ec2/3(TrkT)ll2ixa, S=faa*/kT, 5=9/16 
X{AD2/c2){%2?/2mkT){\/es-\), c=velocity of sound 
in the solid, D= coupling constant between conduction 
electron and optical mode of vibration, C= coupling 
constant between conduction electron and acoustical 
mode of vibration, f= first nonvanishing reciprocal 
vector of the lattice, #coo= characteristic energy of an 
optical phonon, E = energy of a carrier=h2K2/2m, \ia 

= low-field acoustical mobility, m— effective mass of 
the conduction electron, assumed to be isotropic. 

The term df(K)/dt\ov written above is obtained as
suming that the average energy of an electron is much 
greater than the characteristic optical phonon energy in 
the solid. This assumption is valid in the field range 
higher than 1 kV/cm and at lattice temperatures, at 
which the experiments have been conducted. 
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The term df(K)/dt | Field may be written as 

df(K) 

dt 

eFr df dg "I 
= - K—+g+f£— . 

PMd h\- dE dEJ 
(6) 

One obtains from (1), (3), (4), (5), and (6) 

a2/ (E _\df 2 _ B 11 
») E—+{ — +2 )—+—/+—) [««o 

dE2 \kT /dE kT 2 All 

X 

(e s+l) 

(E—+—)+2(e«-1)( E - ^ - + A ] 
\ 3£2 <9£/ V dE / J 

1 1 rdf eF/ dg\] 

2mc2 

where 
AH (E) 

LJ—— —i (8) 

0 = 1 + ( 5 / 4 ) (2tnc2/ha>Q) (es+1). 

Since the microwave field is in the same direction as 
the dc field the total field F may be written as 

F=ReF0(l+\e^t), (9) 

where F0=the steady field, Xi7
0=the amplitude of the 

microwave field, and a>=the microwave frequency. The 
effect of the microwave field would be to perturb both 
/ and g. Since X is a small quantity, this perturbation 
may be considered to be small and / and g may be 
written as 

/= /o+X/ ie* ' , (10) 

g=go+Xgie*'. (11) 

On substituting (10) and (11) in (7) and (8), and col
lecting the first order terms only, one obtains 

E2-
dfo 

dEL dE kT 

'BkT 

E2 1 
•/o 

+-dEL 2A 
<es+l)S[ 

( df0\ B 
( £ — + - < 
\ dE/ A 

(e«-l)(J5/o)] 

2eF0 d 

3 Ah dE 

•• — efi/m - 2mc2/AQ, 

dr df, £ 2 -i 
— £2—+—A 
dEL dE kT J 

d rBkT 
+—\ (es+l)S[ 

1 dfo 
F0— 

(E)1'2 dE 

(£»"*„), (12) 

(13) 

dEL 2A 

( dfi\ B 

V dE/ A 
(e*-lKEfd 

2eF0 d ME)1'* 
-.-—.—[0i*(g1+g9)2+ fu (14) 
3 Ah dE A 

gi=— eh/m • 2mc2/AQ 

X 

(E)1 '2 

/dfo dfA , 

\dE dE// 
l+j- • (15) 

AQ (E)1 '2 

Putting 

r e= (kT)m/A , (B/2A) (es+1)5= q, 

rm= 2mc2/AQ(kTyi*, (B/A) (es-1) = r, 

p= (3x/16c2WE0
2, (p/Q)+(B/2A) (es+1)5= p', 

E/kT=z\ 

and eliminating go and gi from (12) through (15) one 
obtains 

dr 

dz\ 

df dfo "I 
- (zs+p'z)—+(2s*+2f22)/0 = 0 , (16) 
dz\~ dz J 

[-/ z-p/Q \dfi "I 
23+ +qz)—+(2zi+2rzi)f1 

L\ \+j(wTm/z) / dz J 

2p d / dfo\ 
=j4uTj?h—-A*-r)- (17) 

Q dz\ dz/ 

Equation (16) is the same as that obtained for the 
steady field case.6 

The functional form of the solution of (16) is 

fo=(z2+p'y-rexp(-z2)- (18) 

The perturbation in the energy distribution function fx 
is, however, given by Eq. (17). 

III. THE PERTURBATION IN THE DISTRIBUTION 
FUNCTION BY THE MICROWAVE FIELD 

The quantities symbolized by re and rm may be 
identified at this stage, respectively, with the energy and 
momentum relaxation time. Their values for germanium 
are found to be about 2.24X10"10 and 2.50X10"13 sec. 
The value of corc and corTO at a frequency of 2.18X1011 

rad/sec (the experimental frequency of Gibson et al.) 
are, respectively, 48.6 and 0.056. Evidently then, the 
effect of coTm on / i is negligible for all energies except 
for very small values. Neglect of this term in Eq. (17) 
will, therefore, introduce errors only for low values of E. 
However, since / i is very near zero in this range of 
energy the ultimate result will be very little in error if 
ooTm/z is neglected in Eq. (17). 

I t may be noted, further, that for values of the steady 
field in the range of 1 kV/cm to 4 kV/cm, the value of p 
is of the order of 30-400. Hence, one may reasonably 
introduce the approximation p/H^>z2, since Q, is of the 
order of 2. With this approximation Eq. (18) may be 
reduced to 

r /z*+2rz2\-\ 

'-4-hr)J- (19) 
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Also, Eq. (17) reduces to 

dr dfi 
— zp'— 
dzL dz 

] ^ '^+(2z4+2rz2)/il 

2p d / df0\ 

12 dz\ dz / 
= j4arJfi-—-7U-r). (20) 

The perturbation in the distribution function due to 
microwaves may, hence, be obtained from (20) in the 
presence of steady fields in the range of 1-4 kV/cm. 

It has not been possible to obtain an analytical solu
tion of Eq. (20). In order to study the nature of the 
function / i , numerical solution of (20) was obtained by 
a digital computer retaining only the terms due to 
acoustic phonon scattering and for a value of coTe/(2p)l/4 

= 12.5, corresponding to F0= 2 kV/cm. The plots of / i 
so obtained are shown in Fig. 1. Because of the presence 
of jco in Eq. (20) evidently / i consists of both a real and 
an imaginary component which are shown separately in 
the figure. It may be mentioned that the real component 
gives the in phase component of microwave current, 
while the imaginary part gives the out of phase com
ponent of current. 

It is of interest to note here that the perturbation in 
the distribution function due to the microwave field is 
of oscillatory nature, which means an increased concen
tration of the carriers at certain controllable energy 
levels. It is conjectured that this concentration may be 
made more intense by enhancing the strength of the 
microwave field, and an application of the microwave 
hot electron property of semiconductors to amplification 
by arranging for the interchange of energy with the 
desired signal may be realized. However, in the present 
problem, these distribution function curves could not be 
further utilized. This was due to the fact that the 
calculation of the final current involves an integration 
of these curves, and due to their oscillatory nature, the 
final accuracy obtained in numerical integration was 
rather poor. Hence, the microwave current was calcu
lated using a different procedure outlined in the next 
section. 

IV. MICROWAVE CONDUCTIVITY AND CHANGE 
IN DIELECTRIC CONSTANT 

The distribution function giving the number of 
carriers may be written as 

f=NZfo+\(flr+jfli)l, (21) 

where fir and fu represent respectively the real and 
imaginary components of / i and N is the normalization 
constant. 

The normalization constant N is given by 

N=NQ/ll+Hnr+jni)1, (22) 

where No is the normalization constant in the absence of 
the microwave field and nr and tii represent, respec-

FIG. 1. Perturbation in the distribution function of carriers due 
to the microwave field. Solid line: real part of the function; 
dashed line: imaginary part of the function. 

tively, the integrals 

and 

where 

1 f 
nr=— / firz

2dz 
n0J 

fti=— / fuz2dz, 
n 0 J 

• / • 

»o= / foZ2dz. 

(23) 

(24) 

(25) 

The integrals nr and tii may be evaluated directly from 
Eq. (20). On integrating both sides of (20) between 0 
and oo, one readily obtains 

f. fiz2dz=0, (26) 

since /o, / i and their derivatives are zero at infinity. 
Hence nr and ni are each equal to zero and N is same 

as 7V0. 
The part of the distribution function, contributing to 

the current, may also be written as 

eh F0 

2mkT z2 

( ( 

(w 
<0T'A 

/a/o a/i, dfu\ x —+—+j— 
\dz dz dz / 

(27) 

The above expression is obtained from (15), expanding 
the denominator in the binomial form and retaining 
only the first term. It should be mentioned here that the 
term corm/s, which was neglected while writing the 
equation for / i , is retained here, since its contribution to 
the out of phase component of current may be ap-
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preciable in comparison to that contributed by fu. The 
microwave current is given by 

eh C 
j=Fie^tNo_ Kx

2
gldKJKydKz. 

m J 
(28) 

On substituting g\ from (27), one obtains 

J=F1e
3'0}t(rd(£l+mr/mo+ (j)mi/mo], 

where aac is the dc conductivity, 

m% 

= fozdz, 

= / {/lrZ+|(«rTO)/i»}&, 

and 

W,'= / {fliZ — %COTm(flr+fo)}dz. 

(29) 

(30) 

(31) 

(32) 

where #i, a2, etc., are constants like do. 
On putting (39) into (36) one also obtains for /1 

/ i = ( a o + a i 2 + ^ 2 + • • -)/o. (40) 

To evaluate do, #i, a2* * • etc., one may convert Eq. (31) 
into a set of linear simultaneous algebraic equations. 
This is done by multiplying both sides of Eq. (38) by zn, 
integrating between the limits 0 to co, and varying n 
from 1 to w, if am should be the highest coefficient 
chosen in (39). 

The nth. row of this set of simultaneous equations is 
given by 

m 4core m ar 2p 
£ rarIrH-r+j L /r+rH-3 = ( » + l ) / » , ( 4 1 ) 
r=l p' r=0fl+l p'Q, 

where 

The microwave conductivity and change in dielectric 
constant are given by 

IK— I zKf0dz. 
Jo 

K=n+r, n+r+3, etc. 

(42) 

and 
(Tm= (Tdcil + Mr/nio) , 

A e = (o-dc/coeo) ( w » / w 0 ) . (34) 

I t should be noted that by varying n from 1 to w, one 
obtains from (41) m equations, whereas there are m + 1 
unknowns. The other required equation is obtained from 
Eq. (20). 

In the above expressions mo may be directly evaluated, 
since / 0 is known. For evaluating mr and tnif the method 
of momenta, used by Dykman and Tomchuk9 for 
solving a similar problem has been used. This is detailed 
below. 

Substitute 
dfx 2zz+2rz 

y(z) = —+ / ! . (35) 

£ arIr+2=0. (43) 

After evaluating the constants ao, ai, etc., from the 
above-mentioned set of linear algebraic equations, the 
constants mT and mi of (31) and (32) are obtained from 
the following equations: 

dz 2f 

The undetermined function / i may be written in terms 
of y(z) as 

Mr= X) a(K-l)rlK+huTm Z ) O'KilK , ( 4 4 ) 

and 

/: = U o + / (/o) ^ (2)& /o. (36) mi=
VZa(K-i)ilK-Wm(lK=o+i:aKrlK). (45) 

L ^ 0 -J K=1 K=0 

/o is as given by Eq. (19), and ao is a complex constant. 
On substituting y(z) from (35), Eq. (20) is converted 
into the integral equation 

zy(z) = J / % fid* ( z — ) • 
/ / 7o P'Q\ dz/ p' Jo p 

Using Eq. (26) one writes Eq. (37) as 

zy{z)——j / zlj\dz [z— 

p' Jz p'n\ dz ) • 

(37) 

(38) 

and 

Since / i is finite for all values of 25, the above equation 
may be solved putting 

y(z)= (ai+2a2z+3azz
2-\ ) , (39) 

9 1 . M. Dykman and P. M. Tomchuk, Fiz. Tverd. Tela 2, 2228 
(1960) [translation: Soviet Phys.—Solid State 2, 1988 (I960)]. 

The above equations are derived from (31) and (32) 
replacing f\r and fu by 

fir= (aor+airZ+a2rZ2-] ) / 0 (46) 

fu= (aoi+auz+a2iZ
2-\ ) / 0 . (47) 

The subscripts r and i identify, respectively, the real 
and imaginary parts of the constants. 

One, thus, obtains the conductivity and change in 
dielectric constant using Eqs. (33), (34), (30), (44), 
and (45). 

V. NUMERICAL RESULTS AND DISCUSSION 

The determination of conductivity according to the 
theory given in the previous section requires evaluation 
of the integrals IK and solution of m+1 simultaneous 
equations, if m is the highest order of the constants 
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TABLE I. Values of the constants a0, di, etc., for predominant acoustic phonon scattering. 

a0 aiX(3.9094)~1 a2X (3.9094)"2 a3X(3.9094)-3 a4X (3.9094)^* 

dQr dOi d\r d\i dir &2i &%r &Zi &ir &4i 
0.040950 0.043574 -0.047365 0.086709 -0.074253 0.464759 0.107237 -0.216700 -0.395210 -0.295473 

abX (3.9094)-* a6X (3.9094)~6 a,X (3.9094)"7 a8X (3.9094)"8 a9X (3.9094)"9 

#5r 0,U d$r dQi dir dli #8r dgi d%r d$i 
-0.398596 -0.045964 0.019437 -0.072918 -0.213871 -0.028022 0.176261 0.062792 -0.043573 -0.016469 

chosen. If one considers the effect of acoustic and 
optical phonons together, /o has such a form that IK 
cannot be directly integrated. One may evaluate each 
of the IK in series form or numerically. To keep numeri
cal work to a minimum, numerical results have been 
obtained considering two special cases as discussed 
below. 

A. Acoustic phonon scattering predominant 

It is assumed that optical phonon scattering is com
pletely absent. This is also the assumption made by 
Paranjape. Hence, the results obtained from the ap
proximation may serve as a basis of comparison be
tween the method used by this author and that of the 
present paper. 

Under the above assumption, /0 may be written as 

/o=exp(-«*/2j). (48) 

On substituting (48) in (42) one obtains 

/K+l\ 
IK = \ (2p) <*+1>/4rf - J . (49) 

The value of m was chosen to be 9. The value of p was 
taken to be 100, which corresponds to an applied dc field 
of 2 kV/cm and experimental temperature of 300 °K. 
The values of the different parameters of the Ge sample 
were assumed to be as given below: 

e=1.6X10-19C, w=0.12X9Xl0~31kg, 

c=5.4X103m/sec, /Xa=0.38 m2/v sec, 

S= 1.333, B/A = 63 (from Refs. 4, 10). 

The values of the constants obtained numerically are 
shown in Table I. The values of Aa/a and Ae calculated 
using Eqs. (44) and (45) are also given at the bottom of 
the table. 

Neglecting corm 

ACT C d c - o* 
— = -0.0029, 
0"dc 0-dc 

Ae = 0.336. 

10 J. Yamashita, Progr. Theoret. Phys. (Kyoto) 24, 357 (1960). 

Considering corm 

ACT Cdc—c 
— = =0.0013, 
0"dc O'dc 

A€=0.219. 

The value of Ao/o-dc and Ae obtained from Paranjape's 
formula are, respectively, 0.0013 and 0.149. The experi
mental values are, however, 0.229 and 1.33. It is thus 
observed that the results of this present analysis are 
very close to those of Paranjape, though both are much 
different from the experimental values. 

B. Optical phonon scattering predominant 

It is assumed that in the expression for /0 the term 
z4 is negligible compared to 2rz2 so that /0 may be 
written as 

/o=exp(-rsy# ' ) . (50) 

The integral IK may then be written as 

l/p\{K+l)l2 /K+l\ 

' * - & ) r ( — ) • ( 5 i ) 

The values of the constant, AoyVdc and Ae calculated 
for the same condition as in Case A are shown in 
Table II. 

Acr 
—=0.2368, Ae=0.4311. 
0"dc 

The values of AoyVdc and Ae as calculated in this case 
fit quite closely with the experimental values. Aa/adc 
agrees to within 5% of the experimental value. The 
agreement in the value of Ae, though better than that 
obtained considering acoustic phonons only is, however, 
poorer than that for Ao/o-dc It is difficult to decide at 
this stage whether this is a shortcoming of the theory or 
due to any experimental error. 

It should be noted that in this case though B/A has 
been considered to be much larger, the effect of acoustic 
phonon scattering has been partially taken into con
sideration through the choice of p'. In dc conductivity 
calculations, also, agreement with theory and experi
ment was found with similar assumptions by Yamashita 
and Inoue, 
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TABLE II . Values of constants a0, 0i, etc., for predominant optical phonon scattering. FQ = 2 kV/cm, J = 300°K. 

a0 01X (0.7817) ~1/2 a2X (0.7817)-1 ^3X (0.78l7)~3/2 a4X (0.7817)-2 

# 0 r #(H* # l r # l i # 2 r &U &%r 0>Zi # 4 r # 4 t 

-0.812519 0.260418 0.241280 -0.021382 -0.009446 0.003038 0.638935 -0.037532 -3.345988 -1.276863 

a5X (0.7817)~6/2 aQX (0.7817)"3 <z7X (0.7817)~7/2 a8X (0.7817)"4 a9X (0.78l7)-9/2 

0.252538 0.719359 3.487547 -0.733107 -1.278321 -0.633259 1.524858 2.258067 -0.039384 -0.221570 

It should be mentioned that the present analysis has 
been made with the assumptions: (i) Effective mass of 
carriers is isotropic, (ii) Impurity, intervalley and e-e 
scattering are negligible, (iii) For fields of or above 2 
kV/cm, optical phonon scattering is predominant, (iv) 
Average energy of a carrier is much larger than the 
characteristic energy of optical phonons. It is, however, 
found that even with these assumptions the theory 
shows good agreement with experimental results which 
probably indicates that the deviation from the above 
assumptions is either small or of negligible importance 
in the calculation of conductivity. 

It may be further noted that the numerical results 
given here are for a particular value of steady field. 
Calculations may be extended to cover other values of 

steady field and it is expected because of the general 
nature of the expression that similar agreement would 
be obtainable. 
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